Bayesian network
贝叶斯网
Bayesian network
来自翻译宝典
- 英语>简体中文, 天文学名词数据库
Bayesian network
贝叶斯网络
A Bayesian network is a model that represents variables and conditional interdependencies between variables. In a Bayesian network variables are represented as nodes, and nodes may be connected to one another by one or more links. A link indicates a relationship between two nodes. Nodes typically have corresponding conditional probability tables that are used to determine the probability of a state of a node given the state of other nodes to which the node is connected. One common use of a Bayesian network is to diagnose problems, such as diseases. In operation, a Bayesian network typically grows over time.
贝叶斯网络是一种描述变量之间不确定性关系的图形化表示,由结构模型和条件概率分布两部分构成:结构模型是一个DAG (DireCted Acyclic Graph,有向无环图),图中的节点表示随机变量,是对过程、事件和状态等实体某一特征的描述,图中的边则表示该边连接的两个变量之间具有直接的条件依赖关系。而这种依赖的程度则是由附在每个节点上的概率分布来描述的,其中,根节点X所附的是它的边缘概率分布P(X),而非根节点X所附的是条件概率分布P(X|(X))。[...] 根据定义,一个η元变量的贝叶斯网络可以形式化的描述为B=(Bs,Bp),Bs=(X,Ε) 为结构模型,X=(xl,......xn) 为节点集,E为有向边的集合。Bp为条件概率分布的集合,当各节点取离散值时,Bp为一组CPT (Conditional Probability Table,条件概率表)。可以从定性和定量两个层面来理解贝叶斯网络。在定性层面,它用一个有向无环图描述了不同变量之间的依赖和独立关系。在定量层面,它使用条件概率分布刻画了变量对其父节点的依赖程度强弱。
贝叶斯网络
A Bayesian network is a model that represents variables and conditional interdependencies between variables. In a Bayesian network variables are represented as nodes, and nodes may be connected to one another by one or more links. A link indicates a relationship between two nodes. Nodes typically have corresponding conditional probability tables that are used to determine the probability of a state of a node given the state of other nodes to which the node is connected. One common use of a Bayesian network is to diagnose problems, such as diseases. In operation, a Bayesian network typically grows over time.
贝叶斯网络是一种描述变量之间不确定性关系的图形化表示,由结构模型和条件概率分布两部分构成:结构模型是一个DAG (DireCted Acyclic Graph,有向无环图),图中的节点表示随机变量,是对过程、事件和状态等实体某一特征的描述,图中的边则表示该边连接的两个变量之间具有直接的条件依赖关系。而这种依赖的程度则是由附在每个节点上的概率分布来描述的,其中,根节点X所附的是它的边缘概率分布P(X),而非根节点X所附的是条件概率分布P(X|(X))。[...] 根据定义,一个η元变量的贝叶斯网络可以形式化的描述为B=(Bs,Bp),Bs=(X,Ε) 为结构模型,X=(xl,......xn) 为节点集,E为有向边的集合。Bp为条件概率分布的集合,当各节点取离散值时,Bp为一组CPT (Conditional Probability Table,条件概率表)。可以从定性和定量两个层面来理解贝叶斯网络。在定性层面,它用一个有向无环图描述了不同变量之间的依赖和独立关系。在定量层面,它使用条件概率分布刻画了变量对其父节点的依赖程度强弱。
- 英语>简体中文, 专利术语
Bayesian network
貝氏網路
貝氏網路
- 英语>繁体中文(台湾), 统计学名词